层归一化在深度神经网络中的应用与作用 Layer normalization(层归一化)是一种优化深度神经网络训练稳定性和效率的技术。通过标准化每层的激活值,它减少了梯度消失和爆炸的问题,提升了训练的稳定性。在模型如AlbertAGPT中,LayerNorm确保了层间信息的稳定流动,有助于提高模型的训练效果和泛化能力。 AlbertAGPT (2) 人工智能 (15) GPT模型 (1) 机器学习 (7) 模型优越性 (1) 自然语言处理 (2) 2024年9月11日 | 阅读 41